THE MYRIAD BENEFITS of **METHANE MAPPING:**

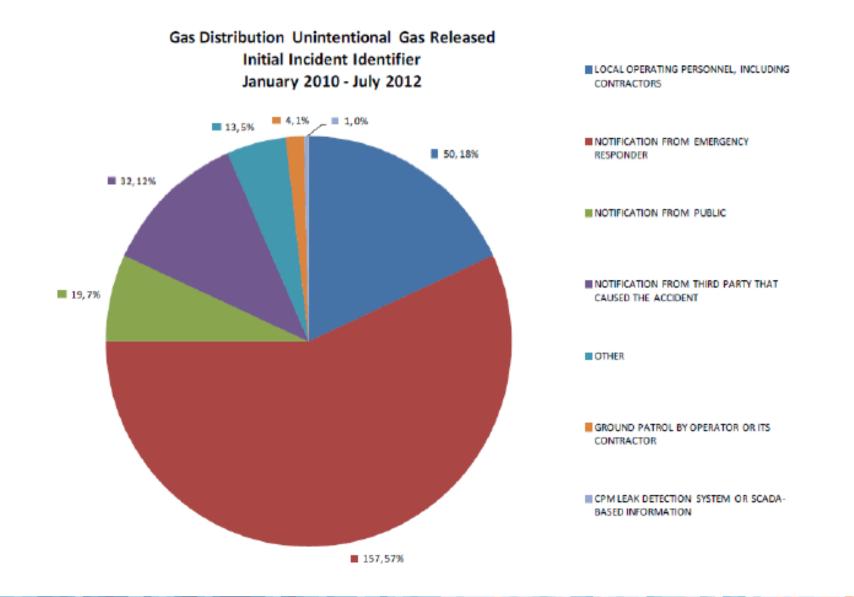
How Innovative Technology and Big Data Analytics are Dramatically Revolutionizing Natural Gas Distribution Repair and Modernization

ENVIRONMENTAL COUNCIL OF THE STATES FALL MEETING ALUMNI-LED WORKSHOP SEATTLE, WASHINGTON

MARY GADE GADE ENVIRONMENTAL GROUP LLC/EDF

Facts About

- Methane and local natural gas distribution utilities
- Advances in leak detection, quantification and prioritization of repairs
- Experience and outcomes with ALD
- Benefits and policy recommendations


Leak Detection Advances

How Utilities Found Leaks Before

- The "state of the art" is handheld methane detectors, DIMP, surveys or responding to odor calls.
- The vast majority of leaks are found by first responders or customers smelling gas.
- Is there a better way? TBD

2012: First Responders Find Most Leaks

4

Leak Detection Advances

EDF/Google Leak Mapping Project

What began as an EDF science and methane public awareness campaign in 2014 is shaping gas utility business practices in 2019.

Explore Chicago map data

ALD+ = Sensors and data analytics

- High sensitivity, mobile Mounted methane detectors
- Available to utilities via Picarro, Heath/LGR
- Faster, more sensitive than optical imaging or hand held flame ionization
- Can quantify leak flow volume

Validation of false positives and leak size estimation

Validation of false positives & leak size estimation Weller *et al.* EnvSci&Tech 2018

ALD finds leaks that other methods miss: PG&E, Centerpoint Energy, CSU analysis finds 3 to 5 times more leaks than standard utility survey methods

Vehicle-Based Methane Surveys for Finding Natural Gas Leaks and Estimating Their Size: Validation and Uncertainty

Zachary D. Weller, ⁶⁷²⁰ Joseph R. Rosciell,⁷ W. Conner Duabe,⁸ Bran K. Land,¹⁰⁰
 Thomas W. Perrara,⁶ Paul E. Brower,⁹ and Joseph C. von Pischer⁷

a "Department of Bodogy, Colorado Hate University, Fest Colles, Colorado Hill 2, Colorado H

* Department of Statistics, Galerade State University, Fast Collins, Colondo 80223, United State

2 Mersilyte Research Incorporated, Billionia, Manufasarta 201023, United States

a Yashinatoy dia Admingketin Research, Engantenet of Cold & Soutramountal Engineering, Wadongton State University, Pollman, 9 Wadongton 99166, Dialad Tante

is "EHD better berepeated, Mages Falls, New York 19894, United States.

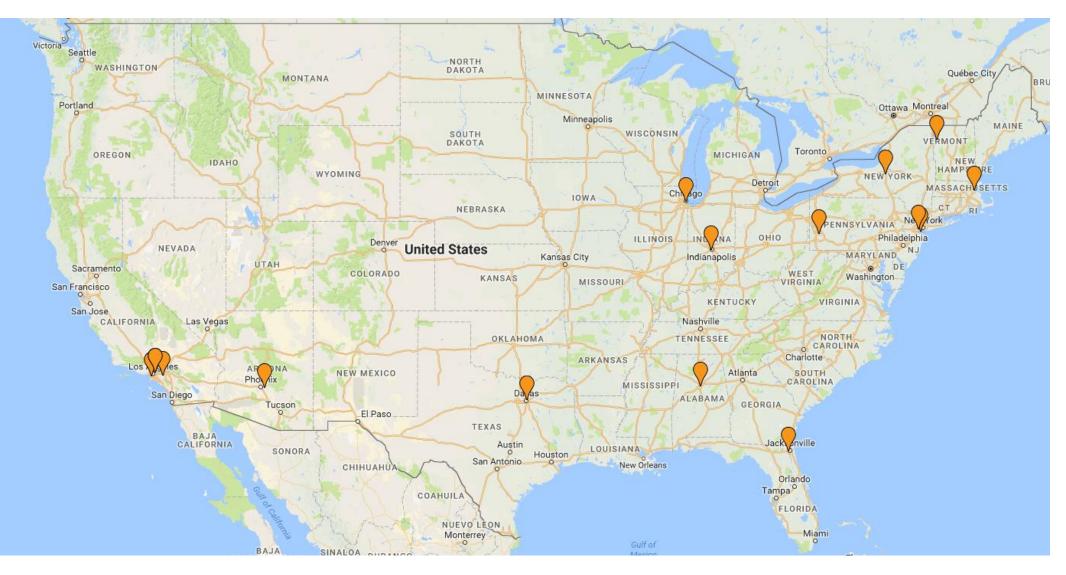
is "Insthemen Environment Neurals Center, Edgewene, Matcheol 2007, United Inter-

1 O Separity Spinister

- in Antibacci Mangag hale in whit samed per (NG) darkwave around a
- reportant his reducing methanic secondarius and couly wate. Mobile surveying technologies have courged as a unw red for econdaring system imaging, but the new
- 11 Incheshipse has seeinged as a new field for monitoring printers emigrate, has the new to incheships has not not have waitily adapted. Now, we waitiligh the afficacy of mobile
- of mathema servers for managing local MC distribution across he containing their delite to
- at detect and litera NG loads and grantify their resistors. In two other, firm granters of
- a hai industros into anbie server composited to NC hais, her local distribution
- companier built even dat nor buil most of them built, indicating that the second CN.
- a setting factor for lock or local NG databative pandoos to understationed by a Sector of a 3.5 We local the unders dataset between multile antimuted ball location, and artical
- 1.5. We many he weather disperse of seconds approve but housed and active in the but but prove and 16 to A categorized of seconds approve and/out facehold facehold specify suffice and/outer and to an option
- a femd that the method contentionated lead magnitude for the smaller halo has accorded networked ate for the largest
- a baits that are requestible for the supporty of total constrant. Across hait size, and do endlock adoptably sold of area sequence
- a same in again promission, and they are analy deployed and offer offerant spatial arrange.

1. INTRODUCTION

r Separing valued gas [202] halo is solve detellation spring in the significant contrast-solution, and public solver is broadly. Mechanic (CH₄) is the primary component of NC and in a the second next significant primary component of NC and is a file second next significant primary component of NC and is a file second next significant primary component of NC and is a file second next shore glither memory primarily for the issues of the second next significant primary for extension is particular to the second second primary primary second second beneficiant files and files. Beneficiant simplement we bookly. stand, as welling." Data from door match somework for an acod to detect and may locations with shreated CH₀ to concentrations, when called balt tableations."


Page from melodic photomer have also been used to estimate as 500 back rates,²⁴ and their name of displayment and ability to as detect back used quality provide bage spatial correspondences (been an attractive agentatic to prioritizing back require and as contine, and contexts, in, address CHL assessment. Melok of

Today's Best Practice: Emissions Quantification & Leak Density Estimation Analytics

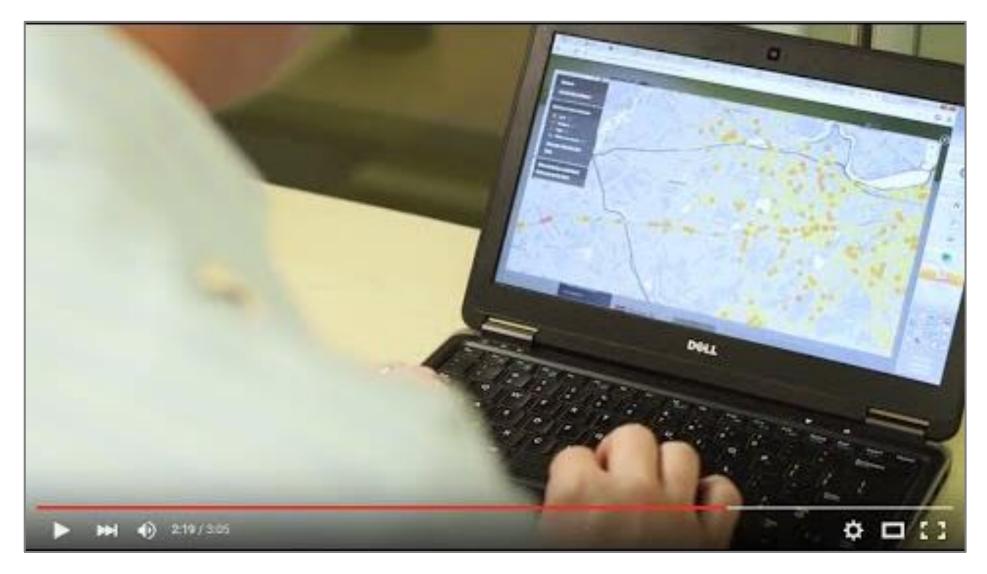
- Mobile mounted high sensitivity leak detectors find and quantify leaks
- Using methane data, analytics estimate leak density and measure emissions of pipe segments rather than identifying individual leaks
- Pipe segments with highest leak density are identified for repair or capital replacement
- Emissions, costs and safety risk are reduced



EDF Mapped Cities

ALD – Leak Abatement Optimization

Segment ID	Segment Rank	Emissions Rate (SCFH)	Emissions range (confidence)	Segment Length (ft)	Emissions Factor (SCFH/ft)	Estimated # of leaks	# Leaks/ft	Emission: Rate / Leak	
-4	1	7.0	4 - 16 SCFH (90%)	1579	0.0044	5	0.0032	1.14	
1	2	5.1	2 - 8 SCFH (90%)	3090	0.0017	5	0.0016	1.0	
3	3	2.4	1 - 4 SCFH (90%)	2535	0.001	4	0.0016	0.6	
2	4	1.5	0.5 - 2 SCFH (60%)	2514	0.0006	1	0.0004	1.5	



A proven method to maximize leak reductions per \$\$

Source: Picarro, Inc. Surveyor use case

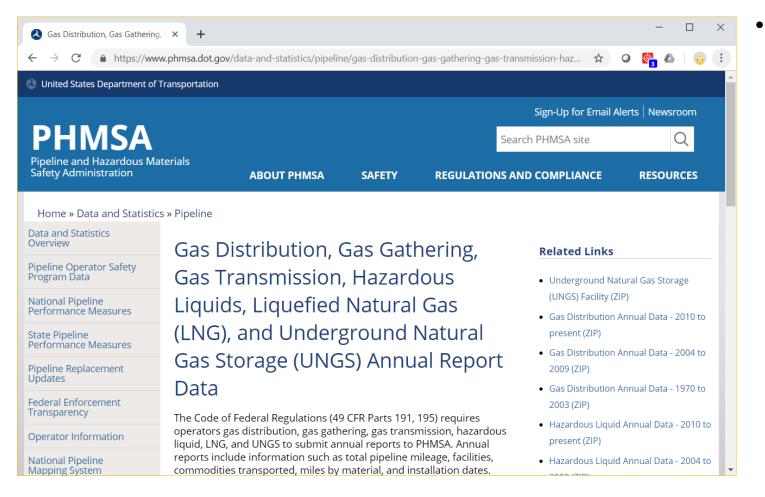
Figure 2. EQ report data table and map for pipeline replacement

Video

PHMSA LDC 101

- Pipeline and Hazardous Materials Administration (DOT) ensures safe and secure movement of hazardous materials
- Local Gas Distribution Companies must submit annual reports to PHMSA on pipe composition, miles of pipe, leaks found, repaired and backlogs
- Service territories must be surveyed for leaks every 5 years, business districts once every year
- Leaks are determined based on concentrations (ppb)
- Leaks are graded in terms of risk based on concentration and proximity to buildings/populations
- Leaks can be Grade 1 Hazardous, Grade 2 Potentially Hazardous, and Grade 3 Non-Hazardous
- Hazardous leaks must be repaired "promptly"

LDC Infrastructure


Large Number of Methane Leaks from Aging Urban Infrastructure

State	Miles of Leak-Prone Pipe	% of U.S. Leak-Prone Pipe
NY	16,442	17%
ТХ	10,652	11%
PA	10,313	11%
ОН	10,282	11%
CA	8,358	9%
NJ	6,368	7%

PHMSA 2016 Data

- New Jersey utilities have more cast iron distribution pipelines than any other state, 3911 miles as of 2019.
- Nationally, 10.6 percent of the safety incidents occurring on gas distribution mains involved cast iron mains. However, less than 2 percent of distribution mains are cast iron.

How to Find Out about LDCs in Your State? Viewing PHMSA Annual Report Data by Pipeline Type and Year

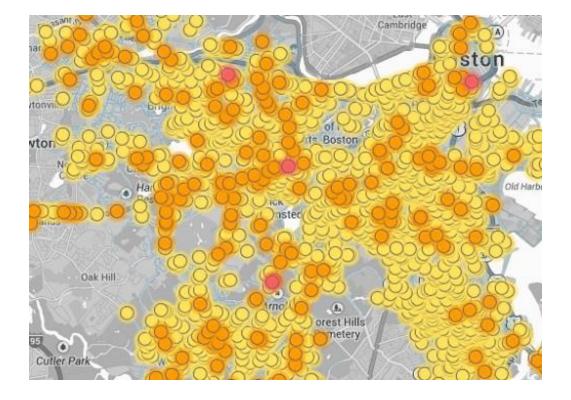
- Select link on the right to download years of data you want.
 - Zipped folder includes PDF of the Gas Distribution Annual Form PHMSA F7100 1-1.
 - PDF is filled in with data fields that are used as column headers in the Excel data sheets, so that you can see how each column header is defined in the form.

Resources

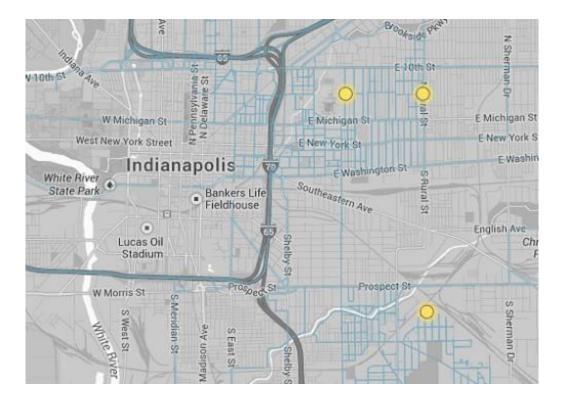
- Left: <u>Annual Report Data</u>
- Blank forms and Detailed Instructions: <u>Operator</u>
 <u>Reports Submitted to PHMSA Forms and</u>
 <u>Instructions</u>

14

Data fields used as column headers in Excel sheets


ome	Tools Gas Distril	bution An ×								?	Sign
6	ଚ 🖶 🖂 🔍		2 / 5		132% -			D Das			🗅 Sha
	PART B - SYSTEM I 1. GENERAL	DESCRIPTION	Re	Report miles of main and number of services in system at end of year.							
		STEEL UNPROTECTED CATHODIC PROTEC		D PLASTIC		DUCTILE IRON	COPPER	OTHER	Reconditioned Cast Iron	SYSTEM TOTAL	
	MILES OF MAIN	BARE COAT MMILES_ MMILES STEEL_ STEEL_U UNP_BARE COATED	MMILES_ MMILE	ATED S_STEEL MMILES_ DATED PLASTIC	MMILES_CI	MMILES_DI	MMILES_CU	MMILES_ OTHER	MMILES_RCI	MMILES_ TOTAL Calc	
	NO. OF SERVICES	NUM_SRVS NUM_SF _STEEL_ STEEL UNP_BARE UNP_CO	VS_NUM_SRVS_NUM STEELSTEEL		NUM_SRVS_CI	NUM_SRVS_ DI	NUM_SRVS_ CU	NUM_SRVS_ OTHER	NUM_SRVS_RCI	NUM_SRVCS _TOTAL Calc	
	2. MILES OF MAINS	S IN SYSTEM AT I	ND OF YEAR								
	MATERIAL	UNKNOWN 2" OR LI		OVER 2" THRU 4"	OVER 4" THRU 8"		OVER 8" THRU 12"		1.2"	STEM TALS	
	STEEL	MMILES_STEEL_UNK	MMILES_STEEL_ LT2IN	MMILES_STEEL_ 2IN_TO_4IN	MMILES_STEE 4IN_TO_8IN	TEEL_ MMILES_STEEL				_ <mark>STEEL_</mark> Calc	
	DUCTILE IRON			MILES_DI_ N_TO_12IN	MMILES_DI_ MMILE GT12IN		s_DI_TOTAL Calc				
	COPPER	MMILES_CU_UNK	MMILES_CU_LT2IN	MMILES_CU_ 2IN_TO_4IN			MMILES_CU_ MMILES_ 8IN_TO_12IN GT12I			_CU_TOTAL Calc	
							ES_CI_WR_	MMILES_CI		_CI_WR_	
	CAST/WROUGHT IRON	MMILES_CI_WR_ UNK	MMILES_CI_WR_ LT2IN	MMILES_CI_WR_ 2IN_TO_4IN	MMILES_CI_WI 4IN_TO_8IN		_TO_12IN	GT12IN		_cl_wk_ Calc	

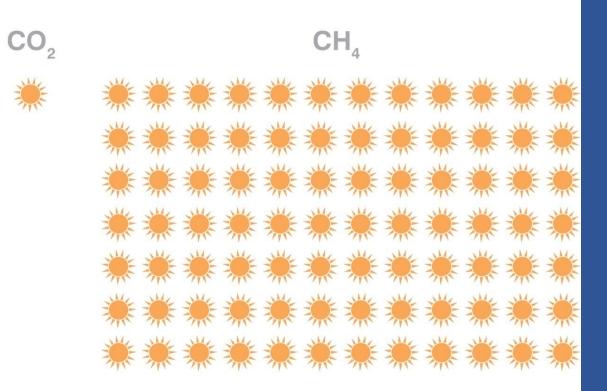
Snapshot of Excel sheet showing 2018 gas distribution annual data


AutoSave Off	団 ら、	<" → →			annual_gas_distribution_2018 - E	Excel	Virginia Pala	cios 🕐 🔏	团 — ć	
File Home I	nsert P	age Layout Fo	ormulas Data	Review	View Help 🔎 Search				🖻 Share 🛛 🖵 Cor	mment
Paste 🖋 Calib	ri I <u>U</u> ∽	<u> </u>	A [×] = = =		Wrap Text Date Merge & Center ~ \$ ~ % \$] 500 -	Conditional Format a Formatting V Table V	B Cormot	× ↓ ↓ Z V Sort 8	Y Select Y Ideas	
Clipboard 🗔		Font	Г <u>я</u>	Alignme	nt 🕞 Number	r₄ Styles	Cells	Editir	ng Ideas	
√ 3 →	X	fx DATA	FILE AS OF							
					1	1	1	1	1	
A	B	C	D	E	F F	G	H		J	
One operator can Records sorted by				_	AR, STATE (STOP), COMMODITY, REPORT_NUN	VIBER)				
	_				OPERATOR_NAME	OFFICE ADDRESS STREE	OFFICE ADDRESS CIT	OFFICE ADDRES	OFFICE ADDRESS	OFFI
	YEAR	R	_NUMBER	_ID	-	т	Y	S_COUNTY	STATE	ZIP
7/1/2019	2018	20190110	37507	18	ABBYVILLE, CITY OF	PO BOX 100	ABBYVILLE		KS	6751
7/1/2019	2018	20190941	38823	27	ABITA SPRINGS NAT GAS & WATER	22161 Level Street	Abita Springs	St. Tammany Par	i LA	7042
7/1/2019	2018	20191017	38473	45	ADAIRSVILLE, CITY OF	104 TOWNPARK DRIVE	KENNESAW		GA	3014
7/1/2019	2018	20191076	38671	49	TOWN OF ADAMSVILLE GAS DEPT	203 Sunrise Drive 231 Eas	Adamsville		TN	3831
7/1/2019	2018	20190555	37985	54	ADEL GAS DEPT, CITY OF	5261 CARLTON RIDGE CIR	HAHIRA	Lowdnes	GA	3163
7/1/2019	2018	20191104	38592	81	AGUILAR, TOWN OF	101 W Main Street	Aguilar	Las Animas	СО	8102
7/1/2019	2018	20190957	38407	180	SPIRE ALABAMA INC.	2101 6th Ave N	Birmingham		AL	3520
7/1/2019	2018	20190464	37887	207	ALASKA PIPELINE CO	401 E. INTERNATIONAL AI	ANCHORAGE		AK	995:
7/1/2019	2018	20199271	37294	225	ALBANY MUNICIPAL GAS CO	106 E Clay Street	Albany		MO	6440
7/1/2019	2018	20190576	38008	234	ALBANY WATER GAS & LIGHT COMMISSION	104 TOWN PARK AVENUE	KENNESAW		GA	3014
7/1/2019	2018	20199136	37135	252	ALEDO GAS DEPT, CITY OF	9 Executive Woods Ct	Belleville		IL	6222
7/1/2019	2018	20199293	37317	261	ALEXANDER CITY MUNICIPAL GAS	520 Calhoun St	Alexander City		AL	3501
7/1/2019	2018	20190711	38153	270	ALEXANDRIA MUNICIPLE GAS SYSTEM, CITY C	0 2021 Industrial Park Rd, B	Alexandria		LA	7130
7/1/2019	2018	20190109	37492	315	ALLERTON GAS CO	PO BOX 825	CENTERVILLE	Appanoose	IA	5254
7/1/2019	2018	20190173	37568	333	ALMA GAS DISTRIBUTION SYSTEM, CITY OF	326 MISSOURI	ALMA		KS	6640
7/1/2019	2018	20199309	37338	342	ALMA NATURAL GAS SYSTEMS, CITY OF	614 MAIN ST.	ALMA	Harlan	NE	6892
7/1/2019	2018	20199248	37270	360	ALTAMONT GAS DEPT, CITY OF	P O Box 305	Altamont		KS	6733
GD AF	R 2018	\oplus				:				[
									New notific	cotion

Mapping Results

Boston: Older Pipes, More Leaks

Indianapolis: Newer Pipes, Fewer Leaks

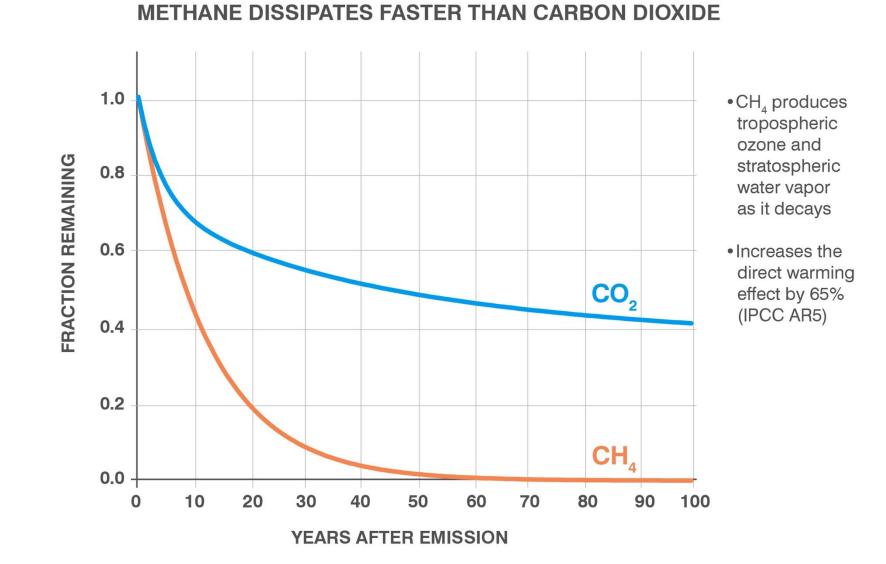

Why Addressing LDC Methane Emissions Matters?

- Climate Benefits
- Ozone Air Quality
- Ratepayer Savings
- Public Safety

Methane Facts

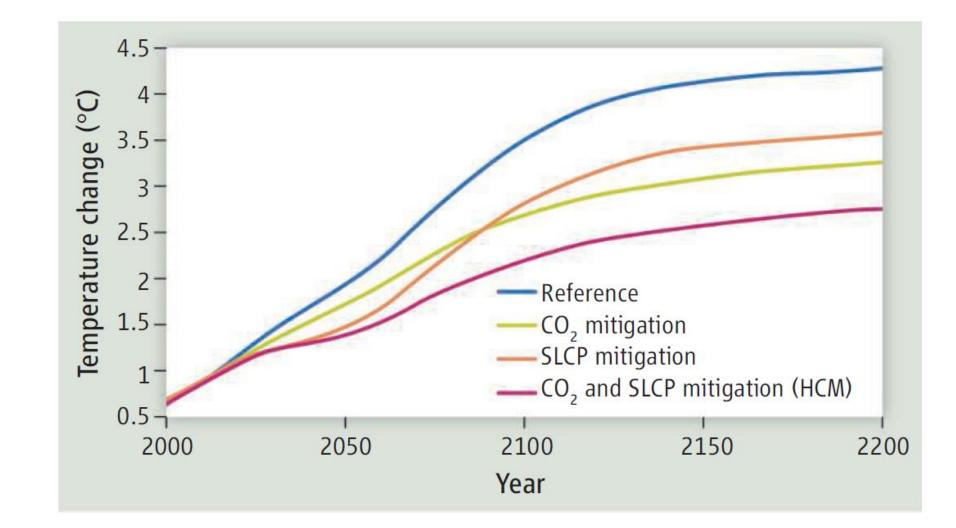
CH4 traps more heat than CO2...

EACH METHANE MOLECULE TRAPS 84X MORE HEAT



Ratio of direct radiative efficiencies, W m⁻² ppb⁻¹ (IPCC AR5)

19


Methane Facts

...but breaks down faster than CO2

Climate Impacts

Methane <u>and</u> CO₂ reductions required

Ozone Air Quality

Increasing Methane has Important Effects on Levels of Atmospheric Ozone

- Oxidation of methane produces ozone in the troposphere and lower stratosphere.
 - Complex series of chemical reactions of methane produce up to two ozone molecules per molecule of methane
 - In the lower atmosphere, this adds to air quality concerns ("bad ozone")
- Reactions of methane destroy ozone in the upper stratosphere
 - Destruction of methane in the upper stratosphere produce hydrogen oxides that react with ozone.
 - This leads to the destruction of "good ozone" the levels of ozone in the stratosphere that protect us from biologically-harmful ultraviolet radiation

Ozone Air Quality

The Link between Methane and Tropospheric Ozone

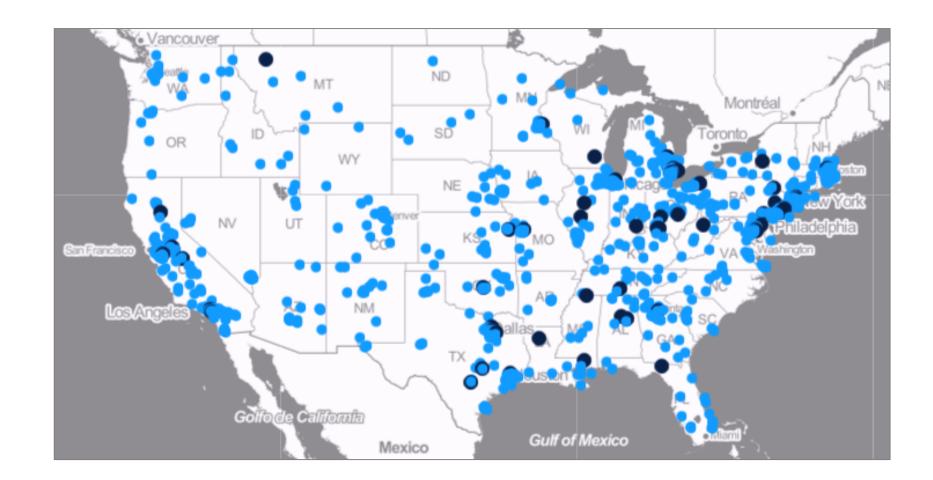
- Less of a link to individual local ozone episodes, BUT, part of global background concentrations
- Global tropospheric O3 decreases linearly with reductions in CH4 emissions
- Efficacy of CH4 emission reductions for air quality/climate goals is INDEPENDENT OF LOCATION
- Implications for seeking cost-effective pre-cursor source controls when traditional sources are "tapped out"


What We Thought and What We Know NOW About Methane Emissions System-Wide

- EPA estimates emissions of 400 billion cubic feet per year system wide
- New estimates are 640 billion cubic feet per year (Alverez et al. Science)
- A 60% increase!

LAUF – Ratepayer Pays!

- At 1.2 cents a cubic foot—retail value of \$7.7 billion a year LOST
- For local systems, true leak count is 2.4 times higher than currently estimated. Even more millions of dollars in losses (Waller et al ACS)
- EPA estimates leaked gas itself costs \$194M a year


Safety San Bruno pipeline explosion

"Safety?"

Pipeline peril: Natural gas explosions reveal silent danger lurking in old cast iron pipes

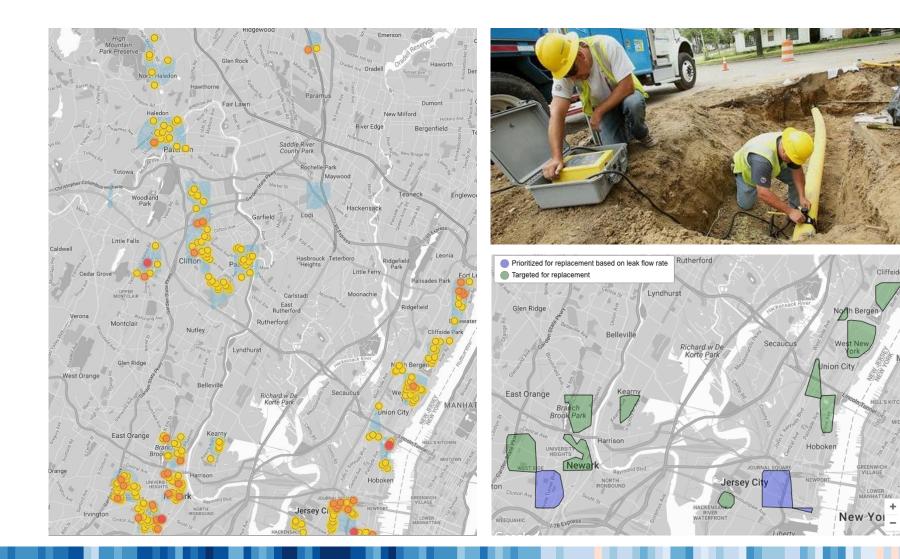
USA Today Nov 12, 2018

ALD and Leak Quantification Applications

- Pipeline Replacement Prioritization
- Leak Repair Prioritization
- Climate Action Contributions Quantified
- Tropospheric Ozone Abatement

Advance Leak Detection

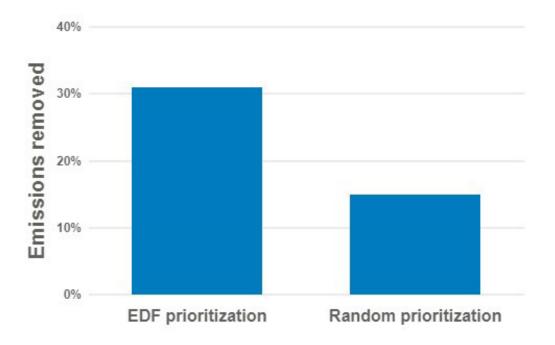
Targeting the Largest Leaks Results in Greatest Benefits: Less Cost

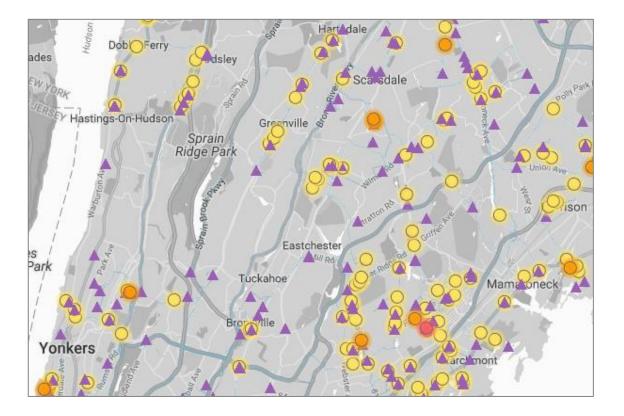

Number of Leak Indications 115 130 145 160 50 60 70 80 90 100 175 190 205 220 235 0 10 20 30 40 1.0 0.9 0.8 Proportion of Total Emissions 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.97 0 0.04 0.23 0.29 0.6 0.66 0.72 0.78 0.84 0.91 0.1 0.16 0.35 0.4 0.47 0.53

E-town Cumulative Emissions Curve

Proportion of Leak Indications

Pipeline Replacement Prioritization


PSE&G: ALD+ methods helped prioritize \$900M in pipeline replacement



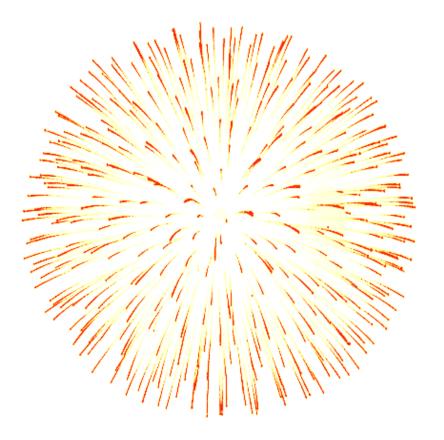
Leak Repair Prioritization

Con Ed: Fixing Non-Hazardous Leaks Faster

Con Edison emissions reductions

Reporting GHG Reductions

Gov. Wolf sets target of slashing Pa.'s greenhouse gas pollution 80 percent by 2050


Pittsburg Post-Gazette | January 8, 2019

The Quadruple Win of Reducing LDC Methane Emissions

1. ECONOMIC BENEFITS TO RATEPAYERS

2. SAFETY

- 3. CLIMATE MITIGATION
- 4. IMPROVED AIR QUALITY

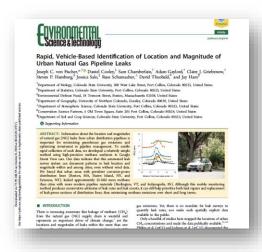
Traditional Methodologies vs Advanced Leak Detection

"It...defies belief that, despite the widespread availability 21st century technology, the primary leak detectors for natural gas pipelines are the public's own eyes and noses. Methane is a climate change super-pollutant and we don't even know how much is being released from pipelines. This needs to change."

New Mexico Senator Tom Udall announcing Amendments to Improve the PIPES Act of 2019 (S.2299) on July 30, 2019

Findings and Recommendations

Findings:


- Advanced leak detection methods would reduce more than 50% of methane emissions by repairing only the largest 20% of leaks.
- Advanced leak detection finds more leaks including hazardous Grade 1 leaks.
- Advanced leak detection allows for quantification and reporting of emissions reductions.
- Advanced leak detection creates opportunities for more frequent, less resource-intensive leak surveys.

Recommendations

- Require use of ALD to establish inventory
- Mandate abatement of environmentally significant non-hazardous leaks (by leak flow volume)
- Track emissions
- Partner with PUC to address LDC costs and incentives
- Advocate for utility inclusion of ALD in DIMP program, after safety

Relevant CSU EDF Research publications

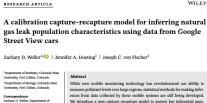
1) Description of methodology von Fischer *et al.* EnvSci&Tech 2017

2) Incorporation into utility operations Palacios et al. PublUtilFortn 2017

Integrating Leak Quantification into Natural Gas Utility Operations Virginia Palacios Senior Research Anglust Environmental Defense Fund Simi R. George, Manager of Natural Gas Distribution Regulation, Enviro Joseph C. von Fischer, Associate Professor at Colorado State University

Kristing Mohlin, Senior Economist, Environmental Defense Fund

May 201


Abstract

Natural gas utilities can incorporate leak flow rate data into existing pipeline replacement and leak repair prioritization frameworks to more rapidly and efficiently reduce leakage on their system. Leak Tepsin prioritization interventistic or inset rapidly and entitleney reduce earlinge of their systemic teak distributions typically demonstrate a "lat-tail," where a few, large leaks are responsible for the majorit of lost gas volumes. Through ranking and ordering leak flow rate data, utilities can identify a subset of the largest leaks to repair or the leakiest pipelines to replace, and capture more gas per dollar spent on leak repair or pipeline replacement. This benefits ratepayers, who pay for the cost of lost gas, and also carries broader environmental and societal benefits.

1. Introduction

Studies of natural gas distribution pipeline leaks indicate that a relatively small subset of leaks is responsible for a disproportionate share of total observed emissions (Brandt et al., 2016; Lamb et al., 2015; Hendrick et al., 2016; von Fischer et al., 2017). Even though natural gas distribution utilities must expeditiously repair hazardous leaks, many large leaks can persist for months or years prior to repair

3) Advanced statistics for estimating total leakage Weller *et al.* **Environmetrics 2018**

Received: 9 January 2018 Revised: 4 June 2018 Accepted: 5 June 2

Check for updates WILEY

While new mobile monitoring technology has revolutionized our ability to measure pollutant levels over large regions, statistical methods for making inferences from data collected by these mobile systems are still being developed. We introduce a new capture-recapture model to answer key inferential ques tions from data collected by mobile monitoring systems. We apply our new s, CO 80523. zdweller@rams.colostate.ed method to characterize populations of natural gas (NG) leaks in urban areas using data collected by atmospheric methane analyzers placed on Google Street View cars. Leaks in urban NG distribution systems correspond to an economic unding information loss, are a potential safety hazard, and are climate altering because NG is pri-marily composed of methane, a potent greenhouse gas. The new calibration capture-recapture (CCR) model combin lata from trolled methane releas experiments and data collected from mobile air monitors to enable inference for several NG leak population characteristics, including the number of undetected leaks and the total methane output rate in a surveyed region. Our methodology is a novel application of capture-recapture modeling. The CCR model addr challenges associated with using a capture-recapture model to analyze data collected by a mobile monitoring system such as a variable sampling effort. We develop a Markov chain Monte Carlo algorithm for parameter estimation and apply the CCR model to data collected in two U.S. cities. The CCR model provides a new framework for inferring the total number of leaks in NG distribution stems and offers critical insights for informing intelligent infrastructure

4) Validation of false positives & leak size estimation Weller et al. EnvSci&Tech 2018

Environmental Science & Technolog

Vehicle-Based Methane Surveys for Finding Natural Gas Leaks and Estimating Their Size: Validation and Uncertainty

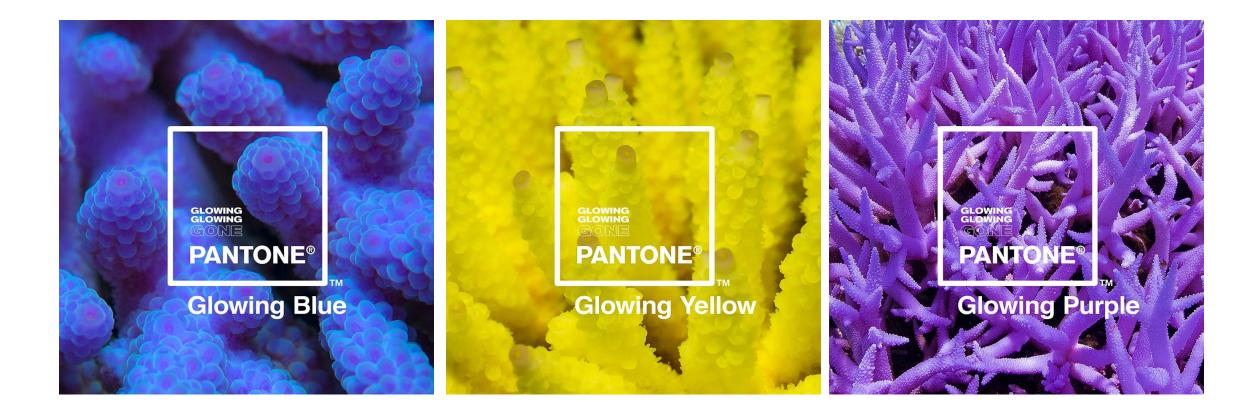
3 Zachary D. Weller, ***** Joseph R. Roscioli,[§] W. Conner Daube,[§] Brian K. Lamb,[§] 4 Thomas W. Ferrara,¹ Paul E. Brewer,[®] and Joseph C. von Fischer[†] s [†]Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United State

s [†]Department of Statistics, Colorado State University, Fort Collins, Colorado 80523, United States 7 Aerodyne Research Incorporated, Billerica, Massachusetts 01821, United States 8 ^{II}Laboratory for Atmospheric Research, Department of Civil & Environmental Engit 9 Washington 99164, United States

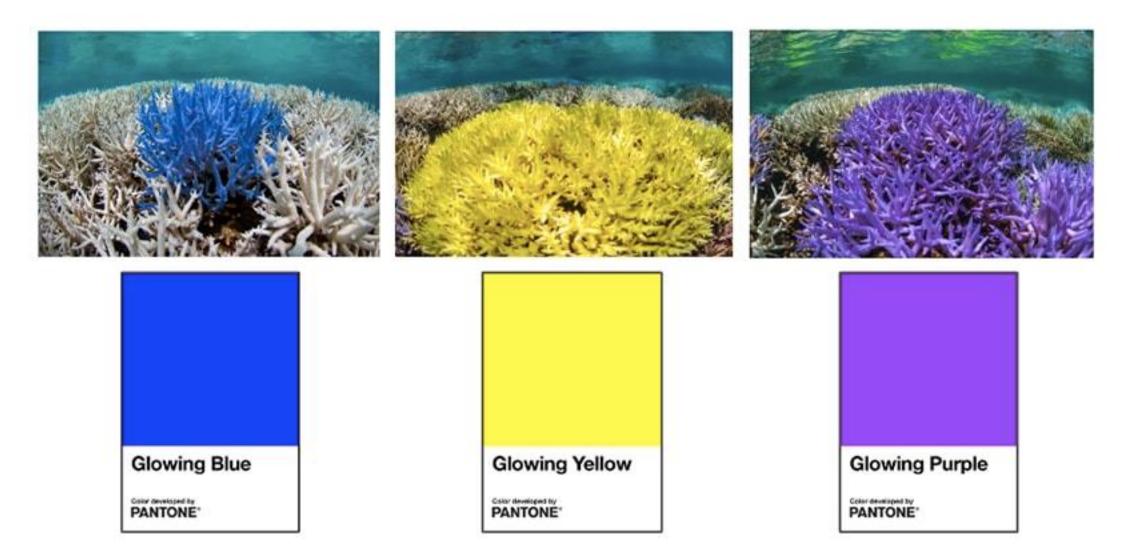
^a GHD Services Incorporated, Niagara Falls, New York 14304, United States 11 Smithsonian Environmental Research Center, Edgewater, Maryland 21037, United State 12 Supporting Information

1 INTRODUCTION 1. IN INDUCE INF The Requiring natural gas (NG) leaks in urban distribution systems as has significant environmental, economic, and public safety so benefits. Methane (CH4) in the primary component of NG and so is the second most important anthropogenic greenhouse gas' sr in large part because it has a global warming potential 86 times so greater than CO₂ over a 30% The economic

aircraft, or walking.⁴ Data from these mobile sensors can be 49 used to detect and map locations with elevated CH₄ 50 concentrations, often called lask indications.⁶⁷⁷ 51 Data from mobile platforms have also been used to estimate 32 NG leak rates,⁶⁰ and their ease of deployment and ability to 53 detect leaks and quickly provide large spatial coverage makes 54 them an attractive approach for prioritizing leak repairs and 55 nineline replacement to reduce CH, emissions. Mebile 56


Article

Pantone 2019 Color of the Year



PANTONE®

Pantone 3-Color Glowing Coral

Pantone Glowing Coral

